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Abstract

Fractal interpolation functions provide a new method to model experimental data. Dalla
and Drakopoulos got some conditions that a vertical scaling factor must obey to model
effectively an arbitrary function (J. Approx. Theory 101 (1999) 289). In this paper, we present
certain counterexamples to show that the converse does not hold.
© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Parameter identification; Fractal interpolation function

1. Introduction

Let {xo,xi,...,xy} be a partition of I = [xp,xn] (ie., xo<x;<---<xp). Let
f0,/1, ..., fn be some given real numbers. Forn = 1,2, ..., N, we define an affine map
, as

X a, 0|]|x d,
o, - + , (1)
Yy Cn Sn y €n
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where the real numbers ay, ¢, s,, d, and e, are chosen such that |s,| <1 and such that

Wy Mo and s Sl S (2)
Jfo Jn1 v Jn
We call such s, vertical scaling factors.
Let K =1 x R. We can define a set map W : H(K)— H(K) as

W(E) = C[J w,(E) for all Ee H(K), (3)
n=1

where H(K) is the metric space of all nonempty compact subsets of K with respect to
the Hausdorff distance. It follows as in [1] that there exists a unique attractor
Ge H(K). Furthermore, G is the graph of a continuous function f : [xp,xy]—>R
which obeys f(x;) =fi, i=0,1,...,N. We call such a function an affine fractal
interpolation function or AFIF for short. In order to determinate the vertical scaling
factors more effectively, Dalla and Drakopoulos got the following theorem and
corollaries.

Theorem 1.1 (Dalla and Drakopoulos [2, Theorem 3]). The graph of an AFIF
remains within a given rectangle R = I x [a, b] if and only if the vertical scaling factors
sy obey

s < <™ (4)
and |s,| <1, where

max . fb—fu b—fo1 a—fu a—fnl}
s™X — min = , = )
4 {b —In b—fo a—fy a—Jo

min a _fnfl a _fn b _fnfl b _fn}

ST — max , , , ;
{ b—fo b—jfy a—fo a—fy

forn=1,2,...,N. These bounds are the best possible.

Corollary 1.1 (Dalla and Drakopoulos [2, Corollary 1]). The graph of an AFIF
remains within a given rectangle R = I x [a, b] with fo = fy if and only if the vertical
scaling factors s, obey

min max
S, << S,

and |s,| <1, where

max __ mm{b — max{fnflvfn} a —max l1l7f;l}},

N

" b—fo ’ a—fo
min __ a— min{fnfl’fn} b— min{fnflaﬂ}
Sn = maX{ b —ﬁ) y P _fb }7

forn=1,2,...,N. These bounds are the best possible.
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Corollary 1.2 (Dalla and Drakopoulos [2, Corollary 2]). The graph of an AFIF
remains within a given strip S =1 X [a, 00) with fo = fy if and only if the vertical
scaling factors s, obey

max
0<s, <5,

and |s,| <1, where

max _ a—max{f,_1,/u}
b

n a *ﬁ]
forn=1,2,...,N. These bounds are the best possible.

However, we will present some counterexamples to show that the theorem and
corollaries are only valid for the one direction.

Remark 1.1. From the proof of Theorem 1.1, we can see that Dalla and
Drakopoulos obtained the following useful result:
Let M,(x,y) = cpx + 0y + €4, n=1,2,...,N, then s;“i“<sn<s2“”‘ if and only if

a<M,(x,y)<b, for all (x,y)eR=1x [a,b].

2. Counterexamples

Let sy be a function which is linear on each [x;—i,x;], i=1,2,...,N and
he(x;) =fi, i=0,1,...,N. Let by be a function which is linear on [xo,xy] and
br(xo0) = fo, by(xn) =fn. Forn=1,2,...,N, we define an affine map )/, as

o x| L,(x) B a,x +d,
n y - - .

Fu(x,y) Sny + hf(Ln(x)) - snbf(x)
From [1], we can get the following lemma.

Lemma 2.1. For any (x,y)€ [xo, xy] X R, @, {ﬂ =w {x} n=12,...,N.

Let Q be the code space {w = (i, i1, ..., 0k, ...) | ix€{0,1, ..., N — 1}}. Define a

shift operator ¢ on Q: Q—Q by ow = (i1, 8, ...), where w = (io, i1, iz, ... ). Define an
k—1 Xij+1—Xj;

operator ¥ : Q—[xo,xy] by ¥(®)=x; + > 2 {(x; —x0)e [T/ .}, where
@ = (io, 11,12, ...). Then  is continuous and onto. Define s,y = $jy+18i 41 Si_,+1-

Proposition 2.1. Let f be the AFIF determined by (1)—(2), then

00

SW (@) =" s by = b)Y (d)) + b (P(w)), weQ.

J=1
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Proof. By Lemma 2.1, f is the AFIF determined by (5), thus

(Ln(x), Fu(x,1 (x))) = (Ln(x),.f (Ln()))-
Hence,

Fy(x,f (%)) = f (Ln(x)).
By (5), we have

f(x) = Fa(L, (), £ (L ()

=suf (Ly ' (x)) = suby (L' (x)) + by (). (6)
Let weQ, we can rewrite (6) as

S () = sof (Y (00)) = sobr (Y (ow)) + hy(Y(@)).

By induction, we have

J (W (@)) =S (f — br) (¥ (" w))
m—1

D S0t Uy = )W (00)) + By (()). (7)

Let m— oo, we can get the proposition since |s;| <1 for all i. O

This proposition is a generalization of Theorem 1 in [3] which is the base of an
algorithm given by Ruan and Sha to solve the inverse problem of FIF.

Example 2.1. Let 7 =[0,1],a = —1,b =1 and let {(0,0), (0.5,0.8),(1,0)} be a given
set of data. Let s; = 0.5,s, = 0. Then we have the following

Proposition 2.2. Let f be the AFIF in Example 2.1. Then for any neN, f(x) is linear
on [1/2" 1/21].

Proof. Let Q, = {w = (i, 1,4, ...) | ij =0 for j<mn—1, i,_; = 1} be a subset of Q.
Then for each xe[1/2",1/2""1], there exists we Q, such that x = y(w).

Let w = (io, i1, b2, ... ) €Qy, then i, ; = 1. Hence s;, , 11 = 0 and s,y = 0. From (7),
we have

FW(@)) =D sup by — b)) (b (d @) + hy (Y()).
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Hence, when x is restricted on [1/2",1/2""1], it follows that

n—1
() = > s\ = by) (L oLy oLy b (%) + By (x)
i=1

:Z (= br)(Ly” (x)) + Iy (x) (8)
is a linear fuﬁctlon. U
Thus, we can get
Proposition 2.3. Let f" be the AFIF in Example 2.1, then max.cjo ) f(x) = 0.8.
Proof. For any neN, let w, = (ip,i1,i,...)€Q satisfying i,y =1 and ;=0

if j#n— 1. From the definition of , we have 1/2" = y(w,). Since fo =f, =0,
by(x) =0 for xe€[0,1]. By (8),

— 1 _
F2) =) 5h(L 7 (1/27) + hy(1/27)
Jj=1
B n—1 1 L/ S n—1 1 n
- - 5 ( / ) - 5 n—j— 1f1 2,,_]f1'
Jj=0 j=0
Since

f(1/2M/f(1/2"Y) =2n/(n+1)>1 for any neN,

we can see that f(1/2) = fi = max,~nf(1/2").
By Proposition 2.2 and f is continuous, we have

max f(x) = max{ Iﬁlﬁf(lﬂ”),f(l)} =max{f(1/2),f(1)} =0.8.

xe[0,1]

Thus we complete the proof. [

By Proposition 2.1, we can easily see that f(x) >0 for all xe[0, 1]. Therefore, from
Proposition 2.3, the graph of the AFIF in Example 2.1 remains within R =
I x [a,b] =[0,1] x [-1,1]. However, from Theorem 1.1, the graph remains within
the rectangle only if

51 <min{b _f.l,b _ff),a _f.l,a _fo} =0.2.
b—fi'b—foa—fra—fo
Thus Theorem 1.1 is valid only for the one direction.
Since fy = f>, we can see Example 2.1 is also a counterexample of Corollary 1.1.
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Define M, (x,y) = cp,x+ s,y +e,. Let Py = (xg,a),P, = (x0,b),P; = (xn,a),
Py = (xy,b). From the proof of Theorem 1.1, we can see that Dalla and
Drakopoulos used the following result:

(a) GeR <= (b) as<M,(P)<b, i=1,2,34, n=1,2,...,N,

where G is the graph of the AFIF and R = [x¢, xy] X [a, b]. Since (b) is equivalent to
conditions (4), Dalla and Drakopoulos obtained Theorem 1.1.
It is clear that (b) = (a) is true. From (1) and (2), we have

Xn — Xn—1 fn _fn—l _ fN _fO

ay = —— Cp =

- n
XN —Xo XN — Xo XN — X0
4 = XN¥n1 = XoXy _ XNfuo1 — Xofu xnfo — Xofy
n = , €6n = — Sn
XN — Xo XN — X0 XN — X0

forn=1,2,...,N. Thus in Example 2.1,
a) = dy = 0.5, dl = 0, d2 = 0.57 Ccl = 08, C) = —0.8, ey = 0, e = 0.8.

Hence, M;(xy,b) = M;(1,1) =0.840.5=1.3>1= 5. That is, condition (b) does
not hold. From our above discussion, we have showed that G remains in R, i.c.,
condition (a) does hold. Thus (a) = (b) is not true.

Fig. 1 displays the graphs of Wi(R), i =1,2,3 and the graph of the AFIF in
Example 2.1.

1
1 -
0.5
0.5
0
0
05 0.5
-1
@ o 0.2 0.4 0.6 0.8 1
1
0.5
0
-0.5
-1 4 . . . .
(¢ o 0.2 0.4 0.6 0.8 1 (o 0.2 0.4 06 0.8 1

Fig. 1. (a) The graph of W(R); (b) the graph of W?2(R); (c) the graph of W3(R); (d) the AFIF in
Example 2.1.
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Fig. 2. The AFIF in Example 2.2.

Example 2.2. Let 7/ = [0, 1] and let {(0,0),(0.5,0.8),(1,0)} be a given set of data.
Let s; = —0.5, s, =0. Using the same method as Example 2.1, we can see
that the maximum value and the minimum value of the AFIF are 0.8 and
0, respectively. Thus, the graph of the AFIF remains within the strip K =
I x [—1, 00). However, from Corollary 1.2, the graph remains within the strip
only if sy =0. This contradiction shows that Corollary 1.2 is valid only for the one
direction.

Fig. 2 displays the graph of the AFIF in Example 2.2.

3. Further remarks

In Section 2, we present some examples which satisfy
W(R)zR and GcR,
where R =1 X [a,b] is a given rectangle and G is the graph of an AFIF. We can

easily see that Wi(R)=R for some ieN in these examples. Thus, the following
question arise naturally:

Question 1. Do there exist an AFIF and a given rectangle R which satisfy the
following (c) and (d)?

() W(R)zR, for any ieN,
(d) GeR.

In [4], the authors give a positive answer to this question and present some other
new results. However, the following question still remains open:

Question 2. Which are sufficient and necessary conditions for s;, | <i< N, to assure
that the graph of an AFIF remains within a given rectangle R = I X [a, b].
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